Pololu Dual G2 High-Power Motor Driver 24v14 for Raspberry Pi (Partial Kit)

Artikelnummer: PO3752

This add-on board makes it easy to control two high-power DC motors with a Raspberry Pi. Its twin discrete MOSFET H-bridges support a wide 6.5 V to 36 V operating range and are efficient enough to deliver a continuous 14 A without a heat sink. The drivers offer basic current limiting functionality, and they accept ultrasonic PWM frequencies for quieter operation. The default pin mappings make it easy to get started, but they can be customized for more specialized applications. This version ships as a partial kit; all surface-mount components are installed, but the included through-hole connectors are not soldered in.

Kategorie: HATs

49,95 €

inkl. 19% USt.,

sofort verfügbar

Lieferfrist: ca. 1 - 3 Tage


These G2 dual high-power motor drivers are add-on boards for the Raspberry Pi, featuring pairs of discrete MOSFET H-bridges designed to drive two large brushed DC motors. They are designed to mount on and plug into compatible Raspberry Pi boards (Model B+ or newer), including the Pi 3 Model B and Model A+.

The minimum operating voltage for all four versions is 6.5 V, while the maximum operating voltages are given in the above table. The board also includes an integrated 5 V, 2.5 A switching step-down regulator that can be used to power the Raspberry Pi it is plugged into, enabling operation from a single power supply.

The driver?s default configuration uses six GPIO pins to control the motor drivers, making use of the Raspberry Pi?s hardware PWM outputs, and it uses two additional pins to read status outputs from the drivers. However, the pin mappings can be customized if the defaults are not convenient, and pins for current sensing and limiting are accessible on the board for more advanced applications.

Note that this motor driver add-on is designed specifically for newer versions of the Raspberry Pi with 40-pin GPIO headers, including the Model B+Model A+Raspberry Pi 2 Model B, and Raspberry Pi 3 Model B. The board matches the Raspberry Pi HAT (Hardware Attached on Top) mechanical specification, although it does not conform to the full HAT specifications due to the lack of an ID EEPROM. (A footprint for adding your own EEPROM is available for applications where one would be useful; pull-ups on SDA, SCL, and WP are provided.) It is not practical to use this expansion board with the original Raspberry Pi Model A or Model B due to differences in their pinout and form factor.

These dual motor drivers are also available as Arduino shields. For single-channel versions in a more compact form factor, consider our High-Power Motor Drivers. For smaller, lower power, and lower cost alternatives designed for a Raspberry Pi, consider our Dual MC33926 Motor Driver for Raspberry Pi and DRV8835 Dual Motor Driver for Raspberry Pi.

Features common to all versions

  • PWM operation up to 100 kHz
  • Motor indicator LEDs show what the outputs are doing even when no motor is connected
  • Integrated 5 V, 2.5 A switching step-down voltage regulator powers the Raspberry Pi base for single-supply operation
  • Python library makes it easy to get started using this board as a motor driver expansion board
  • GPIO pin mappings can be customized if the default mappings are not convenient
  • Current sensing and limiting pins are exposed for advanced use
  • Reverse-voltage protection
  • Undervoltage shutdown
  • Short circuit protection


  • Operating voltage: 6.5 V to 36 V (absolute maximum; not intended for use with 36 V batteries)
    • Maximum can be increased to 40 V if regulator is disconnected (see below)
  • Output current: 14 A continuous
  • Active current limiting (chopping) with approximate default threshold of 40 A (can be adjusted lower)

This version of the 24v14 motor driver is a partial kit, with connectors included but not soldered in. (See item #3753 for an assembled version.)

Pololu Dual G2 High-Power Motor Driver 24v14 for Raspberry Pi (kit version) with included hardware.

The following through-hole connectors and mounting hardware are included with the board, which ships with its surface-mount components populated:

  • one 2×20-pin 0.1? female header
  • three 2-pin 5 mm terminal blocks
  • four M2.5 standoffs (11 mm length), screws, and nuts

The 2×20-pin 0.1? female header should be mounted to the bottom of the board (the side opposite the surface-mount components). Once soldered, this header is used to connect the board to the Raspberry Pi?s 40-pin GPIO header. Alternatively, if you want to continue to have access to the Raspberry Pi?s 40 GPIO pins while the motor driver board is plugged in, you can install a stackable 2×20-pin female header (not included) instead.

You can solder the terminal blocks to the six large through-holes to make your motor and motor power connections, or you can solder a 0.1? male header strip (not included) into the smaller through-holes that border these larger holes. Note, however, that the terminal blocks are only rated for 16 A, and each header pin pair is only rated for a combined 6 A, so for higher-power applications, thick wires should be soldered directly to the board.

Shorting blocks and 0.1? male headers (not included) can be used to make some of the more advanced optional modifications to the board, such as remapping the control pins.

The motor driver includes six 100 µF or 150 µF electrolytic power capacitors, and there is room to add additional capacitors (e.g. to compensate for long power wires or increase stability of the power supply). Additional power capacitors are usually not necessary, and no additional capacitors are included with this motor driver.

A Raspberry Pi is not included.


Size: 65 mm × 56 mm
Weight: 20 g

General specifications

Motor channels: 2
Minimum operating voltage: 6.5 V
Maximum operating voltage: 36 V
Continuous output current per channel: 14 A
Maximum PWM frequency: 100 kHz
Reverse voltage protection?: Y
Partial kit?: Y





Bewertungen (0)

Durchschnittliche Artikelbewertung

Geben Sie die erste Bewertung für diesen Artikel ab und helfen Sie Anderen bei der Kaufenscheidung: